4,466 research outputs found

    Application of convolve-multiply-convolve SAW processor for satellite communications

    Get PDF
    There is a need for a satellite communications receiver than can perform simultaneous multi-channel processing of single channel per carrier (SCPC) signals originating from various small (mobile or fixed) earth stations. The number of ground users can be as many as 1000. Conventional techniques of simultaneously processing these signals is by employing as many RF-bandpass filters as the number of channels. Consequently, such an approach would result in a bulky receiver, which becomes impractical for satellite applications. A unique approach utilizing a realtime surface acoustic wave (SAW) chirp transform processor is presented. The application of a Convolve-Multiply-Convolve (CMC) chirp transform processor is described. The CMC processor transforms each input channel into a unique timeslot, while preserving its modulation content (in this case QPSK). Subsequently, each channel is individually demodulated without the need of input channel filters. Circuit complexity is significantly reduced, because the output frequency of the CMC processor is common for all input channel frequencies. The results of theoretical analysis and experimental results are in good agreement

    Statistically Preserved Structures and Anomalous Scaling in Turbulent Active Scalar Advection

    Full text link
    The anomalous scaling of correlation functions in the turbulent statistics of active scalars (like temperature in turbulent convection) is understood in terms of an auxiliary passive scalar which is advected by the same turbulent velocity field. While the odd-order correlation functions of the active and passive fields differ, we propose that the even-order correlation functions are the same to leading order (up to a trivial multiplicative factor). The leading correlation functions are statistically preserved structures of the passive scalar decaying problem, and therefore universality of the scaling exponents of the even-order correlations of the active scalar is demonstrated.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    A centrosomal target of human t-cell leukemia virus oncoprotein tax

    Get PDF
    published_or_final_versio

    Near-Field Noise Computation for a Supersonic Circular Jet

    Get PDF
    A fully expanded, high-Reynolds-number, supersonic circular jet of Mach number 1.4 is simulated, using a 3-D finite-volume Navier-Stokes solver, with emphasis on the near field noise. The numerical results are generally in good agreement with existing experimental findings

    Passive Scalar: Scaling Exponents and Realizability

    Get PDF
    An isotropic passive scalar field TT advected by a rapidly-varying velocity field is studied. The tail of the probability distribution P(θ,r)P(\theta,r) for the difference θ\theta in TT across an inertial-range distance rr is found to be Gaussian. Scaling exponents of moments of θ\theta increase as n\sqrt{n} or faster at large order nn, if a mean dissipation conditioned on θ\theta is a nondecreasing function of θ|\theta|. The P(θ,r)P(\theta,r) computed numerically under the so-called linear ansatz is found to be realizable. Some classes of gentle modifications of the linear ansatz are not realizable.Comment: Substantially revised to conform with published version. Revtex (4 pages) with 2 postscript figures. Send email to [email protected]

    High-Order Contamination in the Tail of Gravitational Collapse

    Get PDF
    It is well known that the late-time behaviour of gravitational collapse is {\it dominated} by an inverse power-law decaying tail. We calculate {\it higher-order corrections} to this power-law behaviour in a spherically symmetric gravitational collapse. The dominant ``contamination'' is shown to die off at late times as M2t4ln(t/M)M^2t^{-4}\ln(t/M). This decay rate is much {\it slower} than has been considered so far. It implies, for instance, that an `exact' (numerical) determination of the power index to within 1\sim 1 % requires extremely long integration times of order 104M10^4 M. We show that the leading order fingerprint of the black-hole electric {\it charge} is of order Q2t4Q^2t^{-4}.Comment: 12 pages, 2 figure

    Probability Density Function of Longitudinal Velocity Increment in Homogeneous Turbulence

    Full text link
    Two conditional averages for the longitudinal velocity increment u_r of the simulated turbulence are calculated: h(u_r) is the average of the increment of the longitudinal Laplacian velocity field with u_r fixed, while g(u_r) is the corresponding one of the square of the difference of the gradient of the velocity field. Based on the physical argument, we suggest the formulae for h and g, which are quite satisfactorily fitted to the 512^3 DNS data. The predicted PDF is characterized as (1) the Gaussian distribution for the small amplitudes, (2) the exponential distribution for the large ones, and (3) a prefactor before the exponential function for the intermediate ones.Comment: 4 pages, 4 figures, using RevTeX3.

    Active and Passive Fields in Turbulent Transport: the Role of Statistically Preserved Structures

    Full text link
    We have recently proposed that the statistics of active fields (which affect the velocity field itself) in well-developed turbulence are also dominated by the Statistically Preserved Structures of auxiliary passive fields which are advected by the same velocity field. The Statistically Preserved Structures are eigenmodes of eigenvalue 1 of an appropriate propagator of the decaying (unforced) passive field, or equivalently, the zero modes of a related operator. In this paper we investigate further this surprising finding via two examples, one akin to turbulent convection in which the temperature is the active scalar, and the other akin to magneto-hydrodynamics in which the magnetic field is the active vector. In the first example, all the even correlation functions of the active and passive fields exhibit identical scaling behavior. The second example appears at first sight to be a counter-example: the statistical objects of the active and passive fields have entirely different scaling exponents. We demonstrate nevertheless that the Statistically Preserved Structures of the passive vector dominate again the statistics of the active field, except that due to a dynamical conservation law the amplitude of the leading zero mode cancels exactly. The active vector is then dominated by the sub-leading zero mode of the passive vector. Our work thus suggests that the statistical properties of active fields in turbulence can be understood with the same generality as those of passive fields.Comment: 13 pages, 13 figures, submitted to Phys. Rev.

    Physical Electronics and Surface Physics

    Get PDF
    Contains reports on one research project.Joint Services Electronics Program (Contract DAAB07-74-C-0630

    Pressure-induced polarization reversal in multiferroic YMn2O5YMn_2O_5

    Full text link
    The low-temperature ferroelectric polarization of multiferroic YMn2O5YMn_2O_5 is completely reversed at a critical pressure of 10 kbar and the phase transition from the incommensurate to the commensurate magnetic phase is induced by pressures above 14 kbar. The high-pressure data correlate with thermal expansion measurements indicating a significant lattice strain at the low-temperature transition into the incommensurate phase. The results support the exchange striction model for the ferroelectricity in multiferroic RMn2O5RMn_2O_5 compounds and they show the importance of magnetic frustration as well as the spin-lattice coupling
    corecore